Sains Malaysiana 52(8)(2023): 2267-2286
http://doi.org/10.17576/jsm-2023-5208-08
Exploring
Strategies Post- Revocation of Licensing Exemption for Malaysia's Tailing
Processing Industry
(Meneroka Strategi Selepas Pembatalan Pengecualian Pelesenan untuk Industri Pemprosesan Amang Malaysia)
MUHAMMAD ABDULLAH RAHMAT1, AZNAN FAZLI ISMAIL1,2,*, ELI
SYAFIQAH AZIMAN 1, NURSYAMIMI DIYANA RODZI1, RATNA SUFFHIYANNI
OMAR1,2, WAN MOHD RAZI IDRIS3,4 & TUKIMAT LIHAN4
1Nuclear Science Programme, Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Nuclear Technology Research Centre, Faculty of Science and
Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
3Water Analysis Research
Centre (ALIR), Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor, Malaysia
4Department of Earth Sciences and Environment, Faculty of Science and
Technology,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Diserahkan: 12 April 2023/Diterima: 18 Julai 2023
Abstract
The extraction of heavy metals and rare-earth elements from tailing residue
has caused a significant impact towards the environment as well as the
industrial workers as a result from the contamination caused by the processing
activities. The radionclide concentration of 226Ra, 232Th, and 40K in soil and tailing residue were found to
be within the range of 0.31 - 4.97 Bqg-1 and 1.24 - 4.47 Bqg-1, 0.16 - 11.07 Bqg-1 and 1.08
- 8.56 Bqg-1, 0.22 - 1.24 and 0.18 - 1.32 Bqg-1,
respectively. The radiological impack assessment
findings indicated significant overexposure risks where the annual effective
dose was estimated to be within the range of 0.7 – 207.6 mSvy-1 while the excess lifetime
cancer risks we found to have exceeded the limit let by the local regulatory
body. The correlation between study findings and the enactment of the licensing
exemption order was done to identify the effects of non-regulatory compliance
to the Atomic Energy Licensing Act. The study also emphasized on the
remediation importance of industrial sites before implementing any form of
changes towards new regulatory adherence. Hence, the study recommeneds potential remediation techniques but taking into account the operational status
of each proceesing plant, degree of contation and possible future use of the contaminated site.
Keywords: Legislative improvement; NORM; Radiological Impact Assessment;
tailing processing; waste management
Abstrak
Pengekstrakan logam berat dan nadir bumi daripada sisa amang telah memberi impak yang ketara terhadap alam sekitar dan juga pekerja industri akibat pencemaran yang berlaku di lokasi yang melibatkan aktiviti pemprosesan. Kandungan kepekatan radionuklid 226Ra, 232Th dan 40K dalam tanah dan sisa amang masing-masing berada dalam julat antara 0.31 -
4.97 Bqg-1 dan 1.24 - 4.47 Bqg-1,
0.16 - 11.07 Bqg-1 dan 1.08 - 8.56 Bqg-1,
0.22 - 1.24 dan 0.18 - 1.32 Bqg-1. Hasil penilaian impak radiologi menunjukkan risiko pendedahan berlebihan yang ketara dengan nilai dos berkesan tahunan berada dalam julat 0.7 - 207.6 mSvthn-1serta risiko kanser sepanjang hayat didapati melebihi had yang ditetapkan oleh pihak berkuasa tempatan. Hasil kajian ini seterusnya dikaitkan dengan perintah pengecualian pelesenan bagi mengenal pasti kesan akibat ketidakpatuhan terhadap Akta Perlesenan Tenaga Atom. Kajian turut menekankan kepentingan tindakan pemulihan kawasan industri sebelum membuat sebarang perubahan bagi mematuhi akta perlesenan yang baharu. Oleh itu, kajian ini mencadangkan langkah pemulihan dengan mengambil kira status pengoperasian setiap kilang, tahap pencemaran dan juga kebarangkalian penggunaan semula kawasan tercemar.
Kata kunci: NORM; pemprosesan amang; penambahbaikan undang-undang; pengawalan sisa; Penilaian Impak Radiologi
RUJUKAN
Abdel-Razek, Y.A., Desouky, O.A., Elshenawy, A., Nasr,
A.S., Mohammed, H.S. & Elsayed, A.A. 2016. Assessment of the radiation
exposures during separation of rare earth elements from monazite mineral. International
Journal of Advanced Research 4(4): 144-149. doi:10.21474/IJAR01
AELB. 2010. Atomic Energy Licensing Act 1984, (Basic Safety Radiation
Protection) Regulation 2010. Atomic Energy Licensing Act 1984.
AELB. 1994. Perintah Perlesenan Tenaga Atom (Kilang Amang Kecil)
(Pengecualian) 1994. Akta Perlesenan Tenaga Atom 1984.
Ahmad Fauzan, Y., Jasmi Hafiz, A.A. & Muhammad Hatta, R. 2022.
Mineralogy and geochemistry of gold mineralization at Southern Part of Ulu
Sokor Gold Deposit, Kelantan, Malaysia. Sains Malaysiana 51(12):
3865-3877. doi:10.17576/jsm-2022-5112-01
Ahmad Tajudin, S.A., Mohammad Azmi, M.A. & Ain Nabila. 2016.
Stabilization/solidification remediation method for contaminated soil: A
review. IOP Conference Series: Materials Science and Engineering 136(1):
012043. doi:10.1088/1757-899X/136/1/012043
Ahmad, Z.Y. & Jeyanny, V. 2018. Phytoremediation of heavy metals using Acacia mangium in Rahman Hydraulic Tin (RHT) Tailings, Klian. Advances
in Plants & Agriculture Research 8(3): 247-249.
doi:10.15406/apar.2018.08.00322
Al-Areqi, W.M., Che Nor Aniza Che Zainul Bahri, Amran Ab. Majid &
Sukiman Sarmani. 2016. Separation and radiological impact assessment of thorium
in Malaysian Monazite Processing. Malaysian Journal of Analytical Sciences 20(4): 770-776. doi:10.17576/mjas-2016-2004-09
Ali, M.M.M., Zhao, H., Li, Z. & Maglas, N.N.M. 2019. Concentrations of
TENORMs in the petroleum industry and their environmental and health effects. RSC
Advances 9(67): 39201-39229. doi:10.1039/c9ra06086c
Alnour, I.A., Wagiran, H., Ibrahim, N., Hamzah, S. & Elias, M.S. 2017.
Determination of the elemental concentration of uranium and thorium in the
products and by-products of amang tin tailings process. AIP Conference
Proceedings 1799. doi:10.1063/1.4972913
Ang, L.H., Tang, L.K., Ho, W.M., Hui, T.F. & Theseira, G.W. 2010.
Phytoremediation of Cd and Pb by four tropical timber species grown on an
ex-tin mine in Peninsular Malaysia. World Academy of Science, Engineering
and Technology 62(2): 244-248.
Aslam, S., Yousafzai, A.M. & Javed, A. 2022. Bioaccumulation of
hexavalent chromium in commercially edible fish grass carp, Ctenopharyngodon
idella. Sains Malaysiana 51(9): 2757-2762.
doi:10.17576/jsm-2022-5109-02
Atipo, M., Olarinoye, O. & Awojoyogbe, B. 2020. Comparative analysis
of NORM concentration in mineral soils and tailings from a tin-mine in Nigeria. Environmental Earth Sciences 79(16): 1-17.
doi:10.1007/s12665-020-09136-7
Atipo, M., Olarinoye, O., Awojoyogbe, B. & Kolo, M. 2020. High
terrestrial radiation level in an active tin-mine at Jos South, Nigeria high
terrestrial radiation level in an active tin-mine at Jos South, Nigeria. Journal
of Applied Sciences and Environmental Management 24(3): 435-442.
doi:10.4314/jasem.v24i3.6
Azlina, M.J., Ismail, B., Samudi Yasir, M., Syed Hakimi Sakuma &
Khairuddin, M.K. 2003. Radiological impact assessment of radioactive minerals
of amang and ilmenite on future landuse using RESRAD computer code. Applied
Radiation and Isotopes 58(3): 413-419. doi:10.1016/S0969-8043(02)00347-0
Belyaeva, O., Pyuskyulyan, K., Movsisyan, N., Saghatelyan, A. &
Carvalho, F.P. 2019. Natural radioactivity in urban soils of mining centers in
Armenia: Dose rate and risk assessment. Chemosphere 225: 859-870.
doi:10.1016/j.chemosphere.2019.03.057
Canberra. 2000. Genie TM 2000 Spectroscopy Software.
Chibuike, G.U. & Obiora, S.C. 2014. Heavy metal polluted soils: Effect
on plants and bioremediation methods. Applied and Environmental Soil Science 2014: Article ID. 752708. doi:10.1155/2014/752708
Conceição, F., Catuane, F., Taímo, S., Carvalho, F.P., Oliveira, J.M.
& Malta, M. 2018. Radiological assessment of heavy-mineral sand
exploitation in Mozambique. In Naturally Occurring Radioactive Material
(NORM VIII). Proceedings of an International Symposium. pp. 244-247.
Department of Environment Malaysia. 2009a. Contaminated Land Management
and Control Guidelines No. 3: Remediation of Contaminated Sites. Vol. 3.
Department of Environment Malaysia. 2009b. Contaminated Land Management
and Control Guidelines No. 1: Malaysian Recommended Site Screening Levels
for Contaminated Land.
Department of Environment Malaysia. 2009c. Contaminated Land Management
and Control Guidelines No. 2: Assessing and Reporting Contaminated Sites.
No. 2: 48.
Falciglia, P.P., Cannata, S., Romano, S. & Vagliasindi, F.G.A. 2014.
Stabilisation/solidification of radionuclide polluted soils - Part I:
Assessment of setting time, mechanical resistance, γ-radiation shielding
and leachate γ-radiation. Journal of Geochemical Exploration 142:
104-111. doi:10.1016/j.gexplo.2014.01.016
Francis, A.J. & Nancharaiah, Y.V. 2015. In situ and ex situ bioremediation
of radionuclide-contaminated soils at nuclear and norm sites. Environmental
Remediation and Restoration of Contaminated Nuclear and Norm Sites. pp.
185-236. doi:10.1016/B978-1-78242-231-0.00009-0
Friedmann, H., Nuccetelli, C., Michalik, B., Anagnostakis, M., Xhixha, G.,
Kovler, K., de With, G., Gascó, C., Schroeyers, W., Trevisi, R., Antropov, S.,
Tsapalov, A., Kunze, C & Petropoulus, N.P. 2017. Measurement of NORM. In Naturally
Occurring Radioactive Materials in Construction: Integrating Radiation
Protection in Reuse, edited by Schroyers, W. Woodhead Publishing. pp.
61-133. doi:10.1016/B978-0-08-102009-8.00005-0
García-Tenorio, R., Sanz, E., Burkhalter, E., Manjón, G., Vioque, I. &
Diaz, I. 2018. Radiological evaluation of monazite mining in central Spain. In Naturally
Occurring Radioactive Material (NORM VIII). Proceedings of an International
Symposium. pp. 220-224.
González Henao, S. & Ghneim-Herrera, T. 2021. Heavy metals in soils
and the remediation potential of bacteria associated with the plant microbiome. Frontiers in Environmental Science 9(April): 1-17. doi:10.3389/fenvs.2021.604216
Gou, M., Zhou, L. & Then, N.W.Y. 2019. Utilization of tailings in
cement and concrete: A review. Science and Engineering of Composite
Materials 26(1): 449-464. doi:10.1515/secm-2019-0029
Gunawan, O., Pudjadi, E., Musbach, M. & Wahyudi. 2019. Technologically
Enchanced Naturally Occurring Radioactive Materials (TENORM) analysis of Bangka Tin Slag. Journal of Physics: Conference Series 1198: 022006.
doi:10.1088/1742-6596/1198/2/022006
Hewson, G.S. 1996. Overview of radiation safety in the tin by-product
(amang) industry of South East Asia. Health Physics 71(2): 225-234.
doi:10.1097/00004032-199608000-00016
Hinrichsen, Y., Finck, R., Martinsson, J. & Rääf, C. 2021. Maximizing
avertable doses with a minimum amount of waste for remediation of land areas
around typical single family houses after radioactive fallout based on Monte
Carlo simulations. Scientific Reports 11(1): 1-9.
doi:10.1038/s41598-021-84103-1
Hou, D. 2021. Sustainable remediation in China: Elimination,
immobilization, or dilution. Environmental Science and Technology 55(23): 15572-15574. doi:10.1021/acs.est.1c06044
Hu, N., Ding, D., Li, G., Zheng, J., Li, L., Zhao, W. & Wang, Y. 2014.
Vegetation composition and 226Ra uptake by native plant species at a uranium
mill tailings impoundment in South China. Journal of Environmental
Radioactivity 129: 100-106. doi:10.1016/j.jenvrad.2013.12.012
IAEA. 1989. Measurement of Radionuclides in Food and the Environment. A
Guidebook. Technical Report No. 295. doi:10.1016/0265-931x(90)90062-z
Ibeanu, I.G.E. 2003. Tin mining and processing in Nigeria: Cause for
concern? Journal of Environmental Radioactivity 64(1): 59-66.
www.elsevier.com/locate/jenvrad.
Ismail, B., Teng, I.L. & Muhammad Samudi, Y. 2011. Relative
radiological risks derived from different TENORM wastes in Malaysia. Radiation
Protection Dosimetry 147(4): 600-607. doi:10.1093/rpd/ncq577
Ismail, B., Yasir, M.S., Redzuwan, Y. & Amran, A.M. 2003. Radiological
environment risk associated with different water system in amang factory. Pakistan
Journal of Biological Science 6(17): 1544-1547.
Jumaat, A.H. & Ab Hamid, S. 2023. Monitoring heavy metal
bioaccumulation in rivers using damselflies (Insecta: Odonata, Zygoptera) as
biological indicator. Sains Malaysiana 52(2): 321-331.
doi:10.17576/jsm-2023-5202-01
Khalid, S., Shahid, M., Niazi, N.K., Murtaza, B., Bibi, I. & Dumat, C.
2017. A comparison of technologies for remediation of heavy metal contaminated
soils. Journal of Geochemical Exploration 182: 247-268.
doi:10.1016/j.gexplo.2016.11.021
Kolo, M.T., Siti Aishah Binti Abdul Aziz, Khandaker, M.U., Asaduzzaman, K.
& Mohd Amin, Y. 2015. Evaluation of radiological risks due to natural
radioactivity around Lynas Advanced Material Plant environment, Kuantan,
Pahang, Malaysia. Environmental Science and Pollution 22(17):
13127-13136. doi:10.1007/s11356-015-4577-5
Kontol, K.M., Ahmad, S.H.S.S. & Omar, M. 2007. Radiological Impact
Assessment for Landfill Disposal of NORM Wastes in Malaysia. IAEA.
Lal, A. & Fronczyk, J. 2022. Does current knowledge give a variety of
possibilities for the stabilization/solidification of soil contaminated with
heavy metals? - A review. Materials 15(23): 8491. doi:10.3390/ma15238491
Lee, S.K., Husin Wagiran, Ahmad Termizi Ramli, Nursama Heru Apriantoro
& A. Khalik Wood. 2009. Radiological monitoring: Terrestrial natural
radionuclides in Kinta District, Perak, Malaysia. Journal of Environmental
Radioactivity 100(5): 368-374. doi:10.1016/j.jenvrad.2009.01.001
Li, B., Wang, N., Wan, J., Xiong, S., Liu, H., Li, S. & Zhao, R. 2016. In-situ gamma-ray survey of rare-earth tailings dams - A case study in
Baotou and Bayan Obo Districts, China. Journal of Environmental
Radioactivity 151: 304-310. doi:10.1016/j.jenvrad.2015.10.027
Liu, H. & Pan, Z. 2012. NORM situation in non-uranium mining in China. Annals of the ICRP 41(3-4): 343-351. doi:10.1016/j.icrp.2012.06.015
Lloyd, J.R. & Renshaw, J.C. 2005. Bioremediation of radioactive waste:
radionuclide - microbe interactions in laboratory and field-scale studies. Current
Opinion in Biotechnology 16(3): 254-260. doi:10.1016/j.copbio.2005.04.012
Lorenzo-González, M., Ruano-Ravina, A., Torres-Durán, M., Kelsey, K.T.,
Provencio, M., Parente-Lamelas, I., Leiro-Fernández, V., Vidal-García, I.,
Castro-Añón, O., Martínez, C., Golpe-Gómez, A., Zapata-Cachafeiro, M.,
Piñeiro-Lamas, M., Pérez-Ríos, M., Abal-Arca, J., Montero-Martínez, C.,
Fernández-Villar, A. & Barros-Dios, J.M. 2019. Lung cancer and residential
radon in never-smokers: A pooling study in the northwest of Spain. Environmental
Research 172: 713-718. doi:10.1016/j.envres.2019.03.011
Lourenço, J., Mendo, S. & Pereira, R. 2019. Rehabilitation of
radioactively contaminated soil: Use of bioremediation/phytoremediation
techniques. In Remediation Measures for Radioactively Contaminated Areas,
edited by Gupta, D. & Voronina, A.
Springer: Cham. doi:10.1007/978-3-319-73398-2_8
Mohideen, A.H., Thirumalai Arasu, R., Narayanan, V. & Zahir Hussain,
M.I. 2010. Bioremediation of heavy metal contaminated soil by the
exigobacterium and accumulation of Cd, Ni, Zn and Cu from soil environment. International
Journal of Biological Technology 1(2): 94-101.
Muhammad Abdullah Rahmat, Aznan Fazli Ismail, Nursyamimi Diyana Rodzi, Eli
Syafiqah Aziman, Syazwani Mohd Fadzil, Norsyahidah Mohd Hidzir, Mohd Idzat
Idris, Irman Abdul Rahman & Faizal Mohamed. 2023. A window into the future:
Case study of long‑term radiological risk modelling posed by unregulated
mining waste repurposing activities. Environmental Monitoring and Assessment.
Springer International Publishing, 1-18. doi:10.1007/s10661-023-11308-4
Muhammad Abdullah Rahmat, Aznan Fazli, Eli Syafiqah, Nursyamimi Diyana,
Faizal Mohamed & Irman Abdul Rahman. 2022. The impact of unregulated
industrial tin-tailing processing in Malaysia: Past, present and way forward. Resources
Policy 78: 102864. doi:10.1016/j.resourpol.2022.102864
Muhammad Abdullah Rahmat, Aznan Fazli Ismail, Nursyamimi Diyana Rodzi, Eli
Syafiqah Aziman, Wan Mohd Razi Idris & Tukimat Lihan. 2021. Assessment of
natural radionuclides and heavy metals contamination to the environment: Case
study of Malaysian unregulated tin-tailing processing industry. Nuclear
Engineering and Technology 54(6): 2230-2243. doi:10.1016/j.net.2021.12.013
Muhammad Aqeel Ashraf, Mohd Jamil Maah & Ismail Yusoff. 2013.
Evaluation of natural phytoremediation process occurring at ex-tin mining
catchment. Chiang Mai Journal of Science 40(2): 198-213.
Nasirian, M., Ismail, B. & Abdullah, P. 2008. Assessment of natural
radioactivity in water and sediment from amang (tin tailing) processing ponds. The
Malaysian Journal of Analytical Sciences 12(1): 150-159.
Nurrul Assyikeen Md. Jaffary, Kok Siong Khoo, Nor Hasimah Mohamed, Mohd
Abd Wahab Yusof & Syazwani Mohd Fadzil. 2019. Malaysian Monazite and its
processing residue: Chemical composition and radioactivity. Journal of
Radioanalytical and Nuclear Chemistry 322: 1097-1105. doi:10.1007/s10967-019-06813-1
Omar, M., Sulaiman, I., Hassan, A. & Wood, A.K. 2007. Radiation dose
assessment at amang processing plants in Malaysia. Radiation Protection
Dosimetry 124(4): 400-406. doi:10.1093/rpd/ncm212
Permana, S., Soedarsono, J.W., Rustandi, A., Maksum, A., Widana, K.S.,
Trinopiawan, K. & Anggraini, M. 2018. The enhancement of uranium and
thorium in Bangka Tin Slag. Atom Indonesia 44(1): 37-42.
doi:10.17146/aij.2018.529
Qi, C. & Fourie, A. 2019. Cemented paste backfill for mineral tailings
management: Review and future perspectives. Minerals Engineering 144:
106025. doi:10.1016/j.mineng.2019.106025
Qureshi, A.A., Tariq, S., Ud Din, K., Manzoor, S., Calligaris, C. &
Waheed, A. 2014. Evaluation of excessive lifetime cancer risk due to natural
radioactivity in the rivers sediments of northern Pakistan. Journal of
Radiation Research and Applied Sciences 7(4): 438-447.
doi:10.1016/j.jrras.2014.07.008
Roed, J., Andersson, K.G., Barkovsky, A.N., Fogh, C.L., Mishine, A.S.,
Ponamarjov, A.V. & Ramzaev, V.P. 2006. Reduction of external dose in a
wet-contaminated housing area in the Bryansk Region, Russia. Journal of
Environmental Radioactivity 85(2-3): 265-279.
doi:10.1016/j.jenvrad.2004.03.039
Roh, C., Kang, C.K. & Lloyd, J.R. 2015. Microbial bioremediation processes
for radioactive waste. Korean Journal of Chemical Engineering 32(9):
1720-1726. doi:10.1007/s11814-015-0128-5
Sanusi, M.S.M., Ramli, A.T., Hashim, S. & Lee, M.H. 2021. Radiological
hazard associated with amang processing industry in Peninsular Malaysia and its
environmental impacts. Ecotoxicology and Environmental Safety 208:
111727. doi:10.1016/j.ecoenv.2020.111727
Schoenberger, E. 2016. Environmentally sustainable mining: The case of
tailings storage facilities. Resources Policy 49: 119-128. doi:10.1016/j.resourpol.2016.04.009
Shittu Abdullahi, Aznan Fazli Ismail & Supian Samat 2019.
Determination of indoor doses and excess lifetime cancer risks caused by
building materials containing natural radionuclides in Malaysia. Nuclear
Engineering and Technology 51(1): 325-336. doi:10.1016/j.net.2018.09.017
Shittu Abdullahi, Aznan Fazli Ismail & Muhamad Samudi Yasir. 2020.
Radioactive investigation of Malaysia’s building materials containing NORM and
potential radiological risks analysis using RESRAD-BUILD computer code. International
Journal of Environmental Analytical Chemistry 102(9): 2000-2012.
doi:10.1080/03067319.2020.1746778
Shittu Abdullahi, Aznan Fazli Ismail, Supian Samat & Muhamad Samudi
Yasir. 2018. Assessment of natural radioactivity and associated radiological
risks from tiles used in Kajang, Malaysia. AIP Conference Proceedings 1940. doi:10.1063/1.5027916
Solehah, A.R. & Samat, S.B. 2018. Radiological impact from natural
radionuclide activity concentrations in soil and vegetables at former tin
mining area and non-mining area in Peninsular Malaysia. Journal of
Radioanalytical and Nuclear Chemistry 315(2): 127-136. doi:10.1007/s10967-017-5654-7
Syarbaini, Warsona, A. & Iskandar, D. 2014. Natural radioactivity in
some food crops from Bangka-Belitung Islands, Indonesia. Atom Indonesia 40(1): 27-32. doi:10.17146/aij.2014.260
Thoburn, J.T. 1994. The tin industry since the collapse of the
international tin agreement. Resources Policy 20(2): 125-133.
doi:10.1016/0301-4207(94)90025-6
UNSCEAR. 2000. Sources and effects of ionizing radiation, United Nations
Scientific Committee on the effects of atomic radiation UNSCEAR 2000 report to
the General Assembly. UNSCEAR Report I: 1-556.
Vishwakarma, G.S., Bhattacharjee, G., Gohil, N. & Singh, V. 2020.
Current status, challenges and future of bioremediation. Bioremediation of
Pollutants. pp. 403-415. INC. doi:10.1016/B978-0-12-819025-8.00020-X
Wu, D. 2020. Traditional treatment of mine waste. In Mine Waste
Management in China: Recent Development. Singapore: Springer.
doi:10.1007/978-981-32-9216-1.
Yen, L.V. & Kartini, S. 2013. Phytoremediation using Typha
angustifolia L. for mine water effluence treatment: Case study of ex-mamut
copper mine, Ranau, Sabah. Borneo Science 33: 16-22.
Zaidan Kandar, M. & Bahari, I. 1996. Radiation-induced chromosomal
aberrations among TENORM workers: Amang- and ilmenite-processing workers of
Malaysia. Mutation Research - Fundamental and Molecular Mechanisms of
Mutagenesis 351(2): 157-161. doi:10.1016/0027-5107(95)00174-3
Zhang, Q., Zhang, B., Chen, Q., Wang, D. & Gao, X. 2021. Safety
analysis of synergetic operation of backfilling the open pit using tailings and
excavating the ore deposit underground. Minerals 11(8): 818.
doi:10.3390/min11080818
Zhao, X., Fourie, A. & Qi, C.C. 2020. Mechanics and safety issues in
tailing-based backfill: A review. International Journal of Minerals,
Metallurgy and Materials 27(9): 1165-1178. doi:10.1007/s12613-020-2004-5
Ziajahromi, S., Khanizadeh, M. & Nejadkoorki, F. 2014. Total effective
dose equivalent assessment after exposure to high-level natural radiation using
the RESRAD code. Environmental Monitoring and Assessment 186(3):
1907-1915. doi:10.1007/s10661-013-3504-9
*Pengarang untuk surat-menyurat; email: aznan@ukm.edu.my
|